Introduction a Spring Cloud

1 Introduction

Le projet Spring Cloud! regroupe de nombreux sous-projets destinés a faciliter I'utilisation et le déploiement
d'applications Java/Spring dans des environnements Clouds. On trouve notamment

e Spring Cloud Gateway : construction d'une API-Gateway (passerelle) vers des microservices.
e Spring Cloud Config : mise en place d'un systéme réparti de configuration des microservices.
e Spring Cloud Function : facilite la mise en place d'opération métiers en tant que fonction.

e ... et beaucoup d'autres projets.

Nous allons simplement effleurer le sujet en étudiant la partie passerelle vers des microservices ainsi que le serveur
de configuration.

2 Spring Cloud Gateway

2.1 Deébutons

P» Travail a faire :

e Commencez par suivre cette introduction? en partant de zéro (via Spring Initializr). N'oubliez
pas d'ajouter la dépendance vers spring-boot-devtools afin que votre application redémarre
automatiquement.

e Teéléchargez ces deux APIs®, lancez-les et testez-les (http://localhost:9080/swagger-ui/index.html

et http://localhost:9090/swagger-ui/index.html).
e Ajoutez a votre application Spring Cloud Gateway les routes qui permettent d'atteindre ces deux
APIs.

a. https://spring.io/guides/gs/gateway
b. apis.zip

2.2 Les prédicats

Les prédicats permettent de sélectionner la requéte qui va étre routée. Il existe donc plusieurs prédicats qui
correspondent au chemin, au serveur, aux paramétres, aux méthodes HTTP, etc. La méthode path() déja vue

est un prédicat.

1. https://spring.io/projects/spring-cloud

http://localhost:9080/swagger-ui/index.html
http://localhost:9090/swagger-ui/index.html

P» Travail a faire :

e Ouvrez dans un onglet cette documentation ?.

e Avec les prédicats path("...").and().query(name,value) créez une route pour
/api/hello/john?majuscule=oui afin d'obtenir Hello JOHN . Vous devrez vous servir du
filtre setPath afin de changer le chemin.

e Avec le prédicat host(hostName) renvoyez les routes http://bizarre.fr/*x vers

http://httpbin.org:80/get (utilisez setPath). Vous devrez utiliser la ligne ci-dessous pour
transmettre le nom de |'héte utilisé :

[curl --header ’Host: bizarre.fr’ http://localhost:8080/api/hello

e Avec le prédicat method(methodName) , renvoyez les requétes DELETE vers
http://httpbin.org/delete .

e Avec le prédicat before(time) , renvoyez les requétes /time vers
http://httpbin.org/image/png si la date est inférieure & cing minutes aprés le démar-
rage du serveur (utilisez la mathode static new() de la classe ZonedDateTime ainsi que
plusMinutes(minutes)).

o Avec le prédicat header (headerName) , traitez un cas particulier (3 choisir).
e Sila forme "Fluent API" vous géne, vous pouvez toujours définir des méthodes pour vos prédicats :

Définir mon prédicat comme une méthode

BooleanSpec myPredicate(PredicateSpec predicate) {
return predicate.path("/myPath");
}

// utilisation:
.route(p -> myPredicate(p)//
.uri("http://httpbin.org:80"))

\.

a. https://docs.spring.io/spring-cloud-gateway/reference/spring-cloud-gateway-server-webflux/request-predicates-
factories.html

2.3 Les filtres

Les filtres permettent de modifier la requéte qui va étre routée. Nous avons déja utilisé setPath() qui redéfinit
le chemin ainsi que addRequestHeader qui ajoute un header.

P» Travail a faire :
e Ouvrez dans un onglet cette documentation ?.
e Avec le filtre rewritePath faites en sorte que les routes /api/films** donnent le méme

résultat que api/movies .
e Avec le filtre addRequestParameter faites en sorte que /param renvoie vers

http://httpbin.org:80/get?myParam=myValue (il faut combiner deux filtres).

e Nous pouvons également modifier les données avant ou aprés routage. Utilisez le filtre
modifyRequestBody sur la route /modif renvoyée vers http://httpbin.org:80/post pour
passer en majuscule les données de la requéte (vous aurez besoin de la méthode ci-dessous).

s ~

record Message(String message) { }

Mono<Message> toUpper (ServerWebExchange request, String
body) {
return Mono.just(new Message(body.toUpperCase()));

3

Exemple a tester

curl -s -d ’hello’ "http://localhost:8080/modif"

e Nous allons modifier les données aprés routage (utile pour supprimer par exemple des informations
sensibles). Utilisez le filtre modifyResponseBody sur la route /myFilm renvoyée vers le film n°1

mais dans lequel la description sera supprimée (vous aurez besoin du record ci-dessous).

record MovieWithoutDescription(int id, String name, int
year) { }

e Si la forme "Fluent API" vous géne, vous pouvez toujours définir des méthodes pour vos filtres :

Définir mon filtre comme une méthode

UriSpec myFilter(GatewayFilterSpec filter) {
return filter.metadata("myMeteData", "myMetaDataValue")

}

// utilisation:

.route(p -> myPredicate(p)//
.filters(this: :myFilter)//
.uri("http://httpbin.org:80"))

\. J

a. https://docs.spring.io/spring-cloud-gateway /reference/spring-cloud-gateway-server-webflux/gatewayfilter-
factories.html

2.4 Limitation du débit

P» Travail a faire :
e Pour étudier ce mécanisme, nous aurons besoin d'une instance de Redis fonctionnelle. Vous devez
donc (re-)faire ces manipulations ? afin d'activer Redis dans un conteneur docker.
e N'oubliez pas de récupérer la configuration de Spring boot ci-dessous :

r

config du serveur Redis
spring.data.redis.host=<adresse IP de redis-vm>
spring.data.redis.port=6379
spring.data.redis.password=mypass
spring.data.redis.database=0
spring.data.redis.timeout=60000

e Vous pouvez maintenant suivre ce tutoriel ® en enrichissant votre projet.

a. tp-reactive.html#install-redis
b. https://www.baeldung.com/spring-cloud-gateway-rate-limit-by-client-ip

3 Spring Cloud Config

Dans des environnements fortement répartis, comme les microservices, les informations de configura-
tion (par exemple la référence & la base de données) sont disséminées dans chaque application (fichier
application.properties). Le projet Spring Cloud Config? se propose de les centraliser et de les distri-
buer aux différentes applications. Nous allons donc mettre en place un serveur de configuration, et les applications
classiques deviennent des clients de configuration.

P» Travail a faire :
e Vous allez suivre un petit tutoriel pour découvrir cette architecture, mais notez les trois points
suivants :

> N'hésitez pas a utiliser Spring Initializr @ pour créer vos projets,
> Utilisez I'etulab de |'université pour stocker vos fichiers de configuration (voir le sujet),

> Vous pouvez sauter la partie chiffrement.
e Ok, allons-y avec ce tutoriel 2.

a. https://start.spring.io/
b. https://www.baeldung.com/spring-cloud-configuration

4 Pour aller plus loin sur Spring Cloud Gateway

Vous pouvez traiter les premiéres sections du tutoriel sur les filtres3.

2. https://spring.io/projects/spring-cloud-config
3. https://www.baeldung.com/spring-cloud-custom-gateway-filters

